Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 84
1.
J Cell Biol ; 223(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38669038

Membrane contact sites (MCS) between mitochondria and the nucleus have been recently described. Termed nucleus associated mitochondria (NAM), they prime the expression of genes required for cellular resistance to stressors, thus offering a tethering mechanism for homeostatic communication. Here, we discuss the composition of NAM and their physiological and pathological significance.


Cell Nucleus , Mitochondria , Animals , Humans , Cell Nucleus/metabolism , Cell Nucleus/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Membranes/metabolism , Eukaryotic Cells/cytology
2.
Mol Oncol ; 18(4): 797-814, 2024 Apr.
Article En | MEDLINE | ID: mdl-38459714

Mesothelioma is a type of late-onset cancer that develops in cells covering the outer surface of organs. Although it can affect the peritoneum, heart, or testicles, it mainly targets the lining of the lungs, making pleural mesothelioma (PMe) the most common and widely studied mesothelioma type. PMe is caused by exposure to fibres of asbestos, which when inhaled leads to inflammation and scarring of the pleura. Despite the ban on asbestos by most Western countries, the incidence of PMe is on the rise, also facilitated by a lack of specific symptomatology and diagnostic methods. Therapeutic options are also limited to mainly palliative care, making this disease untreatable. Here we present an overview of biological aspects underlying PMe by listing genetic and molecular mechanisms behind its onset, aggressive nature, and fast-paced progression. To this end, we report on the role of deubiquitinase BRCA1-associated protein-1 (BAP1), a tumour suppressor gene with a widely acknowledged role in the corrupted signalling and metabolism of PMe. This review aims to enhance our understanding of this devastating malignancy and propel efforts for its investigation.


Asbestos , Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Humans , Mesothelioma/genetics , Mesothelioma/diagnosis , Pleural Neoplasms/genetics , Lung Neoplasms/pathology
3.
Cells ; 12(15)2023 07 28.
Article En | MEDLINE | ID: mdl-37566036

MicroRNAs (miRNAs) are important regulators of embryonic stem cell (ESC) biology, and their study has identified key regulatory mechanisms. To find novel pathways regulated by miRNAs in ESCs, we undertook a bioinformatics analysis of gene pathways differently expressed in the absence of miRNAs due to the deletion of Dicer, which encodes an RNase that is essential for the synthesis of miRNAs. One pathway that stood out was Ca2+ signaling. Interestingly, we found that Dicer-/- ESCs had no difference in basal cytoplasmic Ca2+ levels but were hyperresponsive when Ca2+ import into the endoplasmic reticulum (ER) was blocked by thapsigargin. Remarkably, the increased Ca2+ response to thapsigargin in ESCs resulted in almost no increase in apoptosis and no differences in stress response pathways, despite the importance of miRNAs in the stress response of other cell types. The increased Ca2+ response in Dicer-/- ESCs was also observed during purinergic receptor activation, demonstrating a physiological role for the miRNA regulation of Ca2+ signaling pathways. In examining the mechanism of increased Ca2+ responsiveness to thapsigargin, neither store-operated Ca2+ entry nor Ca2+ clearance mechanisms from the cytoplasm appeared to be involved. Rather, it appeared to involve an increase in the expression of one isoform of the IP3 receptors (Itpr2). miRNA regulation of Itpr2 expression primarily appeared to be indirect, with transcriptional regulation playing a major role. Therefore, the miRNA regulation of Itpr2 expression offers a unique mechanism to regulate Ca2+ signaling pathways in the physiology of pluripotent stem cells.


MicroRNAs , Animals , Mice , MicroRNAs/metabolism , Thapsigargin/pharmacology , Cell Differentiation/genetics , Embryonic Stem Cells , Homeostasis
4.
Cell Death Differ ; 30(5): 1097-1154, 2023 05.
Article En | MEDLINE | ID: mdl-37100955

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.


Apoptosis , Caspases , Animals , Humans , Apoptosis/genetics , Cell Death , Caspases/genetics , Caspases/metabolism , Carcinogenesis , Mammals/metabolism
5.
Cells ; 11(5)2022 02 26.
Article En | MEDLINE | ID: mdl-35269437

Hepatocellular carcinoma (HCC) is a type of liver cancer with a poor prognosis for survival given the complications it bears on the patient. Though damages to the liver are acknowledged prodromic factors, the precise molecular aetiology remains ill-defined. However, many genes coding for proteins involved in calcium (Ca2+) homeostasis emerge as either mutated or deregulated. Ca2+ is a versatile signalling messenger that regulates functions that prime and drive oncogenesis, favouring metabolic reprogramming and gene expression. Ca2+ is present in cell compartments, between which it is trafficked through a network of transporters and exchangers, known as the Ca2+ transportome. The latter regulates and controls Ca2+ dynamics and tonicity. In HCC, the deregulation of the Ca2+ transportome contributes to tumorigenesis, the formation of metastasizing cells, and evasion of cell death. In this review, we reflect on these aspects by summarizing the current knowledge of the Ca2+ transportome and overviewing its composition in the plasma membrane, endoplasmic reticulum, and the mitochondria.


Carcinoma, Hepatocellular , Liver Neoplasms , Calcium/metabolism , Carcinogenesis/metabolism , Carcinoma, Hepatocellular/pathology , Endoplasmic Reticulum/metabolism , Humans , Liver Neoplasms/pathology
6.
Contact (Thousand Oaks) ; 5: 25152564221095961, 2022.
Article En | MEDLINE | ID: mdl-37366509

Apicoplasts are critical for the growth of medically important parasites. It is now reported that they form contacts with the endoplasmic reticulum (ER) via two pore channels thus enabling Ca2+ trafficking. This highlights the dynamic physical association between organelles as a critical motif in Ca2+ signaling.

7.
Br J Pharmacol ; 179(10): 2081-2085, 2022 05.
Article En | MEDLINE | ID: mdl-34632567

Pyroptosis is a specialized form of inflammatory cell death which aids the defensive response against invading pathogens. Its normally tight regulation is lost during infection by the severe acute respiratory coronavirus 2 (SARS-CoV-2), and thus, uncontrolled pyroptosis disrupts the immune system and the integrity of organs defining the critical conditions in patients with high viral load. Molecular pathways engaged downstream of the formation and stabilization of the inflammasome, which are necessary to execute the process, have been uncovered and drugs are available for their regulation. However, the pharmacology of the upstream events, which are critical to sense and interpret the initial damage by the pathogen, is far from being elucidated. This limits our capacity to identify early markers and targets to ameliorate SARS-CoV-2 linked pyroptosis. Here, we focus attention on the mitochondria and pathways leading to their dysfunction, in order to elucidate the early steps of inflammasome formation and devise tools to predict and counter pathological states induced by SARS-CoV-2. LINKED ARTICLES: This article is part of a themed issue on The second wave: are we any closer to efficacious pharmacotherapy for COVID 19? (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.10/issuetoc.


COVID-19 Drug Treatment , Humans , Inflammasomes , Mitochondria , Pyroptosis , SARS-CoV-2
8.
Cell Metab ; 33(5): 853-855, 2021 05 04.
Article En | MEDLINE | ID: mdl-33951470

Mitochondria cover several functions within the cell, including an influence on the transcription of nuclear genes. Recent work by Tigano et al. (2021) in Nature has identified a pathway of mitochondrial retrograde communication in which the nucleus senses aberrations in the mtDNA to drive the innate immune response.


Cell Nucleus , Mitochondria , Cell Nucleus/metabolism , Communication , DNA, Mitochondrial/metabolism , Immunity, Innate , Mitochondria/genetics
9.
Mol Psychiatry ; 26(7): 2721-2739, 2021 07.
Article En | MEDLINE | ID: mdl-33664474

Dysfunctional mitochondria characterise Parkinson's Disease (PD). Uncovering etiological molecules, which harm the homeostasis of mitochondria in response to pathological cues, is therefore pivotal to inform early diagnosis and therapy in the condition, especially in its idiopathic forms. This study proposes the 18 kDa Translocator Protein (TSPO) to be one of those. Both in vitro and in vivo data show that neurotoxins, which phenotypically mimic PD, increase TSPO to enhance cellular redox-stress, susceptibility to dopamine-induced cell death, and repression of ubiquitin-dependent mitophagy. TSPO amplifies the extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) signalling, forming positive feedback, which represses the transcription factor EB (TFEB) and the controlled production of lysosomes. Finally, genetic variances in the transcriptome confirm that TSPO is required to alter the autophagy-lysosomal pathway during neurotoxicity.


Mitophagy , Neurotoxicity Syndromes , Receptors, GABA , Autophagy , Humans , Lysosomes/metabolism , Mitochondria , Neurotoxicity Syndromes/metabolism , Receptors, GABA/genetics , Receptors, GABA/metabolism
10.
EBioMedicine ; 65: 103244, 2021 Mar.
Article En | MEDLINE | ID: mdl-33647769

Mitochondria play a vital role in cellular metabolism and are central mediator of intracellular signalling, cell differentiation, morphogenesis and demise. An increasingly higher number of pathologies is linked with mitochondrial dysfunction, which can arise from either genetic defects affecting core mitochondrial components or malfunctioning pathways impairing mitochondrial homeostasis. As such, mitochondria are considered an important target in several pathologies spanning from neoplastic to neurodegenerative diseases as well as metabolic syndromes. In this review we provide an overview of the state-of-the-art in mitochondrial pharmacology, focusing on the novel compounds that have been generated in the bid to correct mitochondrial aberrations. Our work aims to serve the scientific community working on translational medical science by highlighting the most promising pharmacological approaches to target mitochondrial dysfunction in disease.


Antioxidants/therapeutic use , Mitochondria/metabolism , Mitochondrial Diseases/drug therapy , Antioxidants/pharmacology , Humans , Mitochondria/drug effects , Mitochondrial Diseases/pathology , Mitochondrial Dynamics/drug effects , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/pathology , Oxidative Phosphorylation/drug effects , Pyrazines/pharmacology , Pyrazines/therapeutic use , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Ubiquinone/therapeutic use
11.
Cell Mol Life Sci ; 78(8): 3767-3775, 2021 Apr.
Article En | MEDLINE | ID: mdl-33619614

Preservation of mitochondrial quality is paramount for cellular homeostasis. The integrity of mitochondria is guarded by the balanced interplay between anabolic and catabolic mechanisms. The removal of bio-energetically flawed mitochondria is mediated by the process of mitophagy; the impairment of which leads to the accumulation of defective mitochondria which signal the activation of compensatory mechanisms to the nucleus. This process is known as the mitochondrial retrograde response (MRR) and is enacted by Reactive Oxygen Species (ROS), Calcium (Ca2+), ATP, as well as imbalanced lipid and proteostasis. Central to this mitochondria-to-nucleus signalling are the transcription factors (e.g. the nuclear factor kappa-light-chain-enhancer of activated B cells, NF-κB) which drive the expression of genes to adapt the cell to the compromised homeostasis. An increased degree of cellular proliferation is among the consequences of the MRR and as such, engagement of mitochondrial-nuclear communication is frequently observed in cancer. Mitophagy and the MRR are therefore interlinked processes framed to, respectively, prevent or compensate for mitochondrial defects.In this review, we discuss the available knowledge on the interdependency of these processes and their contribution to cell signalling in cancer.


Mitochondria/metabolism , Mitophagy , Neoplasms/metabolism , Signal Transduction , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Humans , Lipid Metabolism , Mitochondria/pathology , Neoplasms/pathology , Proteostasis , Reactive Oxygen Species/metabolism
12.
Br J Pharmacol ; 178(2): 298-311, 2021 01.
Article En | MEDLINE | ID: mdl-33037618

BACKGROUND AND PURPOSE: The mitochondrial F1 Fo -ATPsynthase is pivotal for cellular homeostasis. When respiration is perturbed, its mode of action everts becoming an F1 Fo -ATPase and therefore consuming rather producing ATP. Such a reversion is an obvious target for pharmacological intervention to counteract pathologies. Despite this, tools to selectively inhibit the phases of ATP hydrolysis without affecting the production of ATP remain scarce. Here, we report on a newly synthesised chemical, the NH-sulfoximine (NHS), which achieves such a selectivity. EXPERIMENTAL APPROACH: The chemical structure of the F1 Fo -ATPase inhibitor BTB-06584 was used as a template to synthesise NHS. We assessed its pharmacology in human neuroblastoma SH-SY5Y cells in which we profiled ATP levels, redox signalling, autophagy pathways and cellular viability. NHS was given alone or in combination with either the glucose analogue 2-deoxyglucose (2-DG) or the chemotherapeutic agent etoposide. KEY RESULTS: NHS selectively blocks the consumption of ATP by mitochondria leading a subtle cytotoxicity associated via the concomitant engagement of autophagy which impairs cell viability. NHS achieves such a function independently of the F1 Fo -ATPase inhibitory factor 1 (IF1). CONCLUSION AND IMPLICATIONS: The novel sulfoximine analogue of BTB-06584, NHS, acts as a selective pharmacological inhibitor of the mitochondrial F1 Fo -ATPase. NHS, by blocking the hydrolysis of ATP perturbs the bioenergetic homoeostasis of cancer cells, leading to a non-apoptotic type of cell death.


Mitochondria , Proton-Translocating ATPases , Adenosine Triphosphate , Cell Death , Humans , Hydrolysis , Mitochondria/metabolism , Proton-Translocating ATPases/metabolism
14.
Sci Adv ; 6(51)2020 12.
Article En | MEDLINE | ID: mdl-33355129

Mitochondria drive cellular adaptation to stress by retro-communicating with the nucleus. This process is known as mitochondrial retrograde response (MRR) and is induced by mitochondrial dysfunction. MRR results in the nuclear stabilization of prosurvival transcription factors such as the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Here, we demonstrate that MRR is facilitated by contact sites between mitochondria and the nucleus. The translocator protein (TSPO) by preventing the mitophagy-mediated segregation o mitochonria is required for this interaction. The complex formed by TSPO with the protein kinase A (PKA), via the A-kinase anchoring protein acyl-CoA binding domain containing 3 (ACBD3), established the tethering. The latter allows for cholesterol redistribution of cholesterol in the nucleus to sustain the prosurvival response by blocking NF-κB deacetylation. This work proposes a previously unidentified paradigm in MRR: the formation of contact sites between mitochondria and nucleus to aid communication.

15.
J Neuroimmune Pharmacol ; 15(4): 565-566, 2020 12.
Article En | MEDLINE | ID: mdl-32915348

Mitochondrial dysfunction occurs in most neurodegenerative diseases, contributing to both their onset and progression. A recent breakthrough unveiled that propagation of the inflammatory response and subsequent neuronal injury are also mediated extracellularly by damaged mitochondria, which are released from active microglial cells into the brain milieu. These extracellular fragmented mitochondria can therefore generate sufficient toxicity to trigger neuronal death and widespread brain damage through activation of naïve astrocytes. Besides suggesting potential new pharmacological strategies of therapeutic intervention in neurodegeneration, this original work indicates that mitochondria might act as bioactive ligands exerting paracrine functions. This is an interesting, novel and impactful concept that deserves consideration by the scientific community, as the attention should now be focused on the identification of the specific receptors through which mitochondria mediate such an important extracellular signalling mechanism in neurological conditions.


Inflammation Mediators/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Paracrine Communication/physiology , Signal Transduction/physiology , Humans , Neurodegenerative Diseases/pathology
16.
FASEB J ; 34(1): 458-473, 2020 01.
Article En | MEDLINE | ID: mdl-31914665

A glutamic acid to lysine (E40K) residue substitution in superoxide dismutase 1 (SOD1) is associated with canine degenerative myelopathy: the only naturally occurring large animal model of amyotrophic lateral sclerosis (ALS). The E40 residue is highly conserved across mammals, except the horse, which naturally carries the (dog mutant) K40 residue. Here we hypothesized that in vitro expression of mutant dog SOD1 would recapitulate features of human ALS (ie, SOD1 protein aggregation, reduced cell viability, perturbations in mitochondrial morphology and membrane potential, reduced ATP production, and increased superoxide ion levels); further, we hypothesized that an equivalent equine SOD1 variant would share similar perturbations in vitro, thereby explain horses' susceptibility to certain neurodegenerative diseases. As in human ALS, expression of mutant dog SOD1 was associated with statistically significant increased aggregate formation, raised superoxide levels (ROS), and altered mitochondrial morphology (increased branching (form factor)), when compared to wild-type dog SOD1-expressing cells. Similar deficits were not detected in cells expressing the equivalent horse SOD1 variant. Our data helps explain the ALS-associated cellular phenotype of dogs expressing the mutant SOD1 protein and reveals that species-specific sequence conservation does not necessarily predict pathogenicity. The work improves understanding of the etiopathogenesis of canine degenerative myelopathy.


Adenosine Triphosphate/metabolism , Amyotrophic Lateral Sclerosis/pathology , Mitochondria/metabolism , Mutation, Missense , Superoxide Dismutase-1/genetics , Transgenes/physiology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Dogs , Horses , Humans , Mitochondria/pathology , Phylogeny , Species Specificity
17.
Br J Pharmacol ; 176(22): 4245-4246, 2019 11.
Article En | MEDLINE | ID: mdl-31793696

LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.


Mitochondria/metabolism , Drug Therapy , Pharmacological Phenomena , Translational Research, Biomedical
18.
Pharmacol Res ; 146: 104317, 2019 08.
Article En | MEDLINE | ID: mdl-31220561

Mitochondria are dynamic organelles whose processes of fusion and fission are tightly regulated by specialized proteins, known as mitochondria-shaping proteins. Among them, Drp1 is the main pro-fission protein and its activity is tightly regulated to ensure a strict control over mitochondria shape according to the cell needs. In the recent years, mitochondrial dynamics emerged as a new player in the regulation of fundamental processes during T cell life. Indeed, the morphology of mitochondria directly regulates T cell differentiation, this by affecting the engagment of alternative metabolic routes upon activation. Further, Drp1-dependent mitochondrial fission sustains both T cell clonal expansion and T cell migration and invasivness. By this review, we aim at discussing the most recent findings about the roles played by the Drp1-dependent mitochondrial fission in T cells, and at highlighting how its pharmacological modulation could open the way to future therapeutic approaches to modulate T cell response.


Dynamins/immunology , Immunomodulation/immunology , Mitochondria/immunology , Mitochondrial Dynamics/immunology , Animals , Cell Differentiation/immunology , Cell Movement/immunology , Humans , Microtubule-Associated Proteins/immunology , T-Lymphocytes/immunology
19.
Br J Pharmacol ; 176(22): 4284-4292, 2019 11.
Article En | MEDLINE | ID: mdl-31077345

The pharmacological targeting of cholesterol levels continues to generate interest due to the undoubted success of therapeutic agents, such as statins, in extending life expectancy by modifying the prognosis of diseases associated with the impairment of lipid metabolism. Advances in our understanding of mitochondrial dysfunction in chronic age-related diseases of the brain have disclosed an emerging role for mitochondrial cholesterol in their pathophysiology, thus delineating an opportunity to provide mechanistic insights and explore strategies of intervention. This review draws attention to novel signalling mechanisms in conditions linked with impaired metabolism associated with impaired handling of cholesterol and its oxidized forms (oxysterols) by mitochondria. By emphasizing the role of mitochondrial cholesterol in neurological diseases, we here call for novel approaches and new means of assessment. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.


Cholesterol/metabolism , Mitochondria/metabolism , Animals , DNA, Mitochondrial , Humans , Nervous System Diseases , Signal Transduction
20.
Cell Rep ; 25(13): 3573-3581.e4, 2018 12 26.
Article En | MEDLINE | ID: mdl-30590033

Transglutaminase type 2 (TG2) is a multifunctional enzyme that plays a key role in mitochondria homeostasis under stressful cellular conditions. TG2 interactome analysis reveals an enzyme interaction with GRP75 (glucose-regulated protein 75). GRP75 localizes in mitochondria-associated membranes (MAMs) and acts as a bridging molecule between the two organelles by assembling the IP3R-GRP75-VDAC complex, which is involved in the transport of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. We demonstrate that the TG2 and GRP75 interaction occurs in MAMs. The absence of the TG2-GRP75 interaction leads to an increase of the interaction between IP3R-3 and GRP75; a decrease of the number of ER-mitochondria contact sites; an impairment of the ER-mitochondrial Ca2+ flux; and an altered profile of the MAM proteome. These findings indicate TG2 is a key regulatory element of the MAMs.


Endoplasmic Reticulum/metabolism , GTP-Binding Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Membrane Proteins/metabolism , Mitochondria/metabolism , Transglutaminases/metabolism , Animals , Calcium/metabolism , Endoplasmic Reticulum/ultrastructure , Fibroblasts/metabolism , HEK293 Cells , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mice, Inbred C57BL , Mitochondria/ultrastructure , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Protein Binding , Protein Glutamine gamma Glutamyltransferase 2
...